Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets.

نویسندگان

  • Chengzhou Zhu
  • Shaojun Guo
  • Youxing Fang
  • Shaojun Dong
چکیده

In this paper, we developed a green and facile approach to the synthesis of chemically converted graphene nanosheets (GNS) based on reducing sugars, such as glucose, fructose and sucrose using exfoliated graphite oxide (GO) as precursor. The obtained GNS is characterized with atomic force microscopy, UV-visible absorption spectroscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and so on. The merit of this method is that both the reducing agents themselves and the oxidized products are environmentally friendly. It should be noted that, besides the mild reduction capability to GO, the oxidized products of reducing sugars could also play an important role as a capping reagent in stabilizing as-prepared GNS simultaneously, which exhibited good stability in water. This approach can open up the new possibility for preparing GNS in large-scale production alternatively. Moreover, it is found that GNS-based materials could be of great value for applications in various fields, such as good electrocatalytic activity toward catecholamines (dopamine, epinephrine, and norepinephrine).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A density functional study on the mechanical properties of metal-free two-dimensional polymer graphitic Carbon-Nitride

Successful synthesis of the stable metal-free two-dimensional polymer graphitic carbon-nitride with remarkable properties has made it as one of the most promising nanostructures in many novel nanodevices, especially photocatalytic ones. Understanding the mechanical properties of nanostructures is of crucial importance. Thus, this study employs density functional theory (DFT) to obtain the mecha...

متن کامل

Studies on Adsorption of Some Organic Dyes from Aqueous Solution onto Graphene Nanosheets

Graphene, a new member of the carbon family, was used as an adsorbent due to its exceptional capability to remove Rhodamine B (RB) and Malachite Green (MG), two organic dyes, from aqueous solutions. Adsorption kinetics of RB and MG onto graphene and adsorption capacity of the adsorbent were studied. Also the effects of parameters, including pH, contact time, temperature, and adsorbent dosag...

متن کامل

Mussel-inspired green synthesis of silver nanoparticles on graphene oxide nanosheets for enhanced catalytic applications.

We report a facile green approach to the synthesis of silver nanoparticles (Ag NPs) on the surface of graphene oxide nanosheets functionalized with mussel-inspired dopamine (GO-Dopa) without additional reductants or stabilizers at room temperature. The resulting hybrid Ag/GO-Dopa exhibits good dispersity and excellent catalytic activity in the reduction of nitroarenes.

متن کامل

A green chemistry approach for facile synthesis of functionalized boron nitride nanosheets

The lack of a high-yield, renewable and low-cost synthesis method limits the potential applications of boron nitride with impressive characterizations. In this study, a facile method is developed for the preparation of chemically functionalized boron nitride nanosheets (BNNSs) by considering the quantity and quality of chemical materials involved in the synthesis process. The proposed green met...

متن کامل

Phosphotungstic acid supported on functionalized graphene oxide nanosheets (GO-SiC3-NH3-H2PW): Preparation, characterization, and first catalytic application in the synthesis of amidoalkyl naphthols

Grafting of 3-aminopropyltriethoxysilane (APTS) on graphene oxide (GO) nanosheets followed by reaction with phosphotungstic acid (H3PW12O40, denoted as H3PW) gave a new functionalized GO which was characterized using FT-IR, FESEM, EDX, EDX elemental mapping and ICP-OES techniques. The catalytic activity of this nanomaterial containing phosphotungstic counter-anion H2PW12O40¯ (H2PW) which was de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS nano

دوره 4 4  شماره 

صفحات  -

تاریخ انتشار 2010